
J
H
E
P
0
4
(
2
0
0
7
)
0
5
1

Published by Institute of Physics Publishing for SISSA

Received: March 6, 2007

Accepted: April 3, 2007

Published: April 16, 2007

The effective potential, the renormalisation group and

vacuum stability

Martin B. Einhorn

Kavli Institute for Theoretical Physics, University of California

Santa Barbara, CA 93106-4030, U.S.A.

E-mail: meinhorn@kitp.ucsb.edu

D.R. Timothy Jones

Dept. of Mathematical Sciences, University of Liverpool

Liverpool L69 3BX, U.K.

E-mail: drtj@liverpool.ac.uk

Abstract: We review the calculation of the the effective potential with particular em-

phasis on cases when the tree potential or the renormalisation-group-improved, radiatively

corrected potential exhibits non-convex behaviour. We illustrate this in a simple Yukawa

model which exhibits a novel kind of dimensional transmutation. We also review briefly

earlier work on the Standard Model. We conclude that, despite some recent claims to the

contrary, it can be possible to infer reliably that the tree vacuum does not represent the

true ground state of the theory.

Keywords: Renormalization Group, Spontaneous Symmetry Breaking.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep042007051/jhep042007051.pdf

mailto:meinhorn@kitp.ucsb.edu
mailto:drtj@liverpool.ac.uk
http://jhep.sissa.it/stdsearch


J
H
E
P
0
4
(
2
0
0
7
)
0
5
1

Contents

1. Introduction 1

2. The effective potential 2

2.1 The φ4 model 3

3. The Yukawa model 6

3.1 The large nF limit 10

4. The RG improved potential 10

4.1 The m2 > 0 case 12

4.2 The m2 = 0 case 15

4.3 The m2 < 0 case 16

5. The standard model 17

6. Conclusions 19

1. Introduction

The effective potential V (φ) has proved to be an invaluable tool for investigating the nature

of the vacuum state in weakly coupled quantum field theories. There is a well defined

prescription [1, 2] facilitating the perturbative calculation of V (φ), and a large literature

of such calculations for various field theories including the Standard Model (SM ) [3] and

the Minimal Supersymmetric Standard Model (MSSM ) [4]. Theoretical forays into the

Early Universe frequently involve the effective potential and, for example, transition from

an unstable or metastable state by tunnelling or “slow-roll” [5, 6]. New scalar excitations

such as the inflaton are hypothesised to lead to the desired behaviour [7].

In this article, we confine ourselves largely to one specific topic: the destabilisation of

a tree-level vacuum by radiative corrections. In the SM, it has been argued that, if the

fermion loop contribution (dominated by the top quark) to the one-loop potential were

large enough then the electroweak vacuum would be destabilised, due to the existence of a

deeper minimum at large φ; this phenomenon is translated into a lower limit on the Higgs

mass as a function of the top quark mass [8]–[19].

The electroweak minimum of the SM is a consequence of the choice m2 < 0 for the

Higgs mass parameter. As a result the perturbative definition of V (φ) is non-convex (in

the tree approximation) and develops an imaginary part for small values of φ at one loop

and beyond. These issues were addressed in the well-known work of Weinberg and Wu [20],
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where it was shown that the imaginary part has a natural interpretation as a decay rate of

a well-defined state, and that the perturbative V , although non-convex, is nevertheless a

physically meaningful quantity. In the SM both issues (imaginary part and non-convexity)

arise once again in the neighbourhood of the fermion-induced instability, but it has generally

been believed that the perturbative V (φ) remains meaningful in this region too. This

point of view has, however, been challenged recently [21]–[23], which provides us with one

motive for this paper. We devote our attention chiefly to the basic λφ4 theory and a

simple extension involving a Yukawa coupling; the latter exhibits some interesting features

including a form of dimensional transmutation reminiscent of but distinct from the case

discussed originally by Coleman and Weinberg (CW) in ref. [1].

2. The effective potential

To introduce some notation, we review a few definitions. The generating function W [J (x)]

for connected Green’s functions may be defined from the (Euclidean) Feynman path integral

Z[J ] ≡ e−W [J ] =

∫
DΦ e−S[Φ]−

R

dxJ (x)Φ(x), (2.1)

where S is the classical action and Φ is represents all fields of the theory (with indices

suppressed). The classical field associated with the source is

ΦJ ≡ δW

δJ (x)
, (2.2)

and the effective action is defined via the Legendre transform

Γeff [ΦJ ] = W [J ] −
∫

dxJ (x)ΦJ (x). (2.3)

The converse of eq. (2.2) is

J (x) = −δΓeff

δΦJ
. (2.4)

The effective potential is the response to a constant source J (x) ≡ j. Assuming that

the associated classical field is also constant, Φ(x) ≡ φj , the effective action functional

becomes the effective potential

Γeff [ΦJ ] = Veff (φ)

∫
dx, (2.5)

with

j = −∂Veff

∂φ
. (2.6)

There are some significant qualifications of this formalism that must be kept in mind.

The mapping between the source and the classical field may be multi-valued, so different

branches of solutions must be discussed. Moreover, it is well-known [24] that the exact

effective potential is convex and that the true effective potential looks roughly like the

convex hull of the classical effective potential. Between classically degenerate minima, the
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system may break up into domains having one value of the field or the other (Maxwell’s

construction). Thus, the assumption that a constant source is associated with a spacetime

independent classical field breaks down.

Another point of view [29] is to consider the theory associated with the classical po-

tential

Uj(φ) ≡ Vcl(φ) + jφ, (2.7)

where j is thought of as a coupling constant, chosen so that the expectation value of the

field, defined (at the tree level) by the equation

∂Uj

∂φ
= 0 (2.8)

is a particular value1 φj . The effective potential is the expectation value of the Hamiltonian

density for this modified theory. Quite a lot can be learned by thinking in terms of Uj(φ),

and we will return to this below.

With some normalization convention, the effective potential may be summarised by

the equation [2]

Veff (φ) = Vcl(φ) +
1

64π2
STr M(φ)4 ln

(
M(φ)2

µ2

)
−W2(φ). (2.9)

In this expression, φ is the background field; Vcl is the classical or tree potential; M(φ)2 is

the mass matrix in tree approximation associated with the various particles in the theory

and STr is the “supertrace,” a sum over bosonic and fermionic degrees of freedom. The

supertrace term comes from the one-loop approximation, while W2 represents the two-loop

and higher contributions and non-perturbative contributions. It is given by

W2(φ) ≡ ln

〈
exp

(
−

∫
d4xLI(φ, φ̃)

)〉
. (2.10)

Here φ̃ is the quantum field defined by replacing φ → φ + φ̃ in the original Lagrangian.

The precise definition of the interaction Lagrangian LI and the vacuum expectation value

are given in ref. [2]; since they play no role in this paper, we will not pause to define them

here. The expression for Veff in eq. (2.9) is formally exact, but most useful for generating

the loop expansion.

2.1 The φ4 model

In the next section, we will discuss a Yukawa model. First we review the well-known, real

scalar φ4-model, with

Vcl =
m2

2
φ2 +

λ

4!
φ4 (2.11)

so M2(φ) = V ′′
cl (φ) = m2 + λφ2/2, and the one-loop formula becomes

V1 = Vcl(φ) +
V ′′

cl (φ)2

64π2
ln

(
V ′′

cl (φ)

µ2

)
. (2.12)

1Since j has dimensions of mass-cubed, the β-functions for other couplings are unchanged (in a mass-

independent renormalization scheme.)
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Figure 1: The Double well potential

We will discuss three cases depending on the value of m2. For the φ4-model with m2 > 0,

the coupling λ is infra-red (IR) free. As φ → 0, there is no problem with the perturbative

expansion, and the origin remains a minimum. No large logarithms arise so long as the

normalization scale µ ∼ O(m). As φ → ∞, the one-loop correction becomes large, so

that one must improve on this perturbation expansion. Loosely speaking, one must take

µ2 ∼ V ′′
cl (φ). However, since λ becomes large at large scales, perturbation breaks down

in any event. Whether the model has a sensible strong coupling solution is not known

analytically. Lattice calculations [25]–[28] strongly suggest that in fact the theory requires

a cutoff (i.e., is trivial in the continuum limit.)

For m2 = 0, the logarithm diverges as φ → 0, and the effective potential must be

renormalization-group-improved to remove such large logarithms [1]. The conclusions

turned out to be the same as in the case m2 > 0.

For m2 < 0, the case of spontaneous symmetry breakdown, the situation is more

complicated. The double-well potential (figure 1) has two degenerate minima.

In perturbation theory, the logarithm diverges where V ′′
cl (φ) = 0, while for V ′′

cl (φ) < 0,

the effective potential becomes complex. The imaginary part is well-known [29] to be

related to the decay rate per unit volume for the state of the field. Therefore, such an

effective potential, based on the assumption of a stable value of the field, can only be valid

for a limited time. Its precise definition therefore requires some care and has been discussed

in detail by Weinberg & Wu [20]. The preceding formalism is insufficient, since the exact

effective potential is always real and convex [24]. Between the two minima, the true effective

potential is expected to look like the dashed line in figure 1. The crucial requirement to

give meaning to results such as eq. (2.12) is that, for some period of time short compared

to the decay time, the classical background state is required to be homogeneous. This

is a metastable situation which becomes invalid after sufficiently long time. The true

ground state for this range of values of the field is described by a breakup into domains

within which there are approximately constant but different values of the background. This
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Figure 2: The Double well potential for small j.

approximation is even experimentally meaningful in certain situations such as super-cooled

steam or super-heated water.

Substantial insight into what happens for small coupling λ may be obtained by con-

sidering the theory associated with eq. (2.7). For small j > 0, the potential looks as in

figure 2.

Classically there are 3 solutions for φj to eq. (2.8); Uj still has two local minima

but they are no longer degenerate. The one at φj > 0 is metastable, decaying eventually

non-perturbatively via tunnelling. Thus, the effective potential for this homogeneous back-

ground acquires a nonperturbative imaginary part. The third solution is a local maximum

at a value of φj near zero in the perturbatively unstable region V
′′

cl < 0. As a result, the

one-loop approximation eq. (2.12) has an imaginary part. This instability for long wave-

length fluctuations has been discussed in some detail by Guth & Pi [30] and expanded on

in ref. [20]. The breakdown of the homogeneous state is described therein, and we have

little to add.2

As j > 0 increases, the metastable minimum approaches the local maximum, and

eventually they merge, at which point U
′′

j (φj) = 0. This is depicted in figure 3.

Since U
′′

j = V
′′

cl , this is also the point where M2(φ) = 0. To our knowledge, the

behaviour of the system at this particular value of φj has not been analysed in the litera-

ture. Even though the imaginary part of the one-loop effective potential vanishes at this

point, it is perturbatively unstable, since, as noted in ref. [14], the effective potential has

power divergences at this point in orders higher than three loops. Specifically, elementary

power counting demonstrates that at L loops, V (φ) includes contributions of the form

2One must be careful about the interpretation of the “long-time” regime as described in ref. [30]. That

is only an intermediate time at best; eventually the system descends to the mixed state described by the

convex effective potential.
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Figure 3: The Double well potential when U
′′

j (φj) = 0.

κ3(λφ)4ηL−3, where

η =
κλ2φ2

M2
. (2.13)

where κ = (16π2)−1. This phenomenon does not appear to have been discussed in the

literature, presumably because it begins at four loops. It should be no surprise, however,

given the situation depicted in figure 3. This is an inflection point where fluctuations of one

sign do not grow, but fluctuations of opposite sign run away. Given this classical instability,

one should not be surprised to find a divergence in perturbation theory. One would expect

the growth of perturbations to be less dramatic than in the region of negative curvature.

Whereas the correlation length for unstable modes in the regime where M2(φ) < 0 is finite,

for M2(φ) = 0 it is infinite. However, there is a mass scale in the classical potential, viz.,

V
′′′

cl (φj) = λφj =
√

2λ|m2| ≡ ∆, and one would expect this to determine the scale of

growth of perturbations.

Precisely how these evolve in time has not been determined, but presumably a treat-

ment similar to ref. [30] should be possible. We have not carried such an analysis, but if,

after some time, the system evolves essentially classically, then it is easy to work out the

behaviour. For the zero mode, it is clear from the figure that, if the field starts anywhere

other than at the inflection point with zero velocity, it will oscillate in time. Regardless

of where it is initially, it eventually will roll down the hill, far from the starting point,

indicating the instability of small displacements. For short times, one can show that the

displacement grows as t2, with a coefficient proportional to ∆. For the quantum mechanical

problem, one would have to develop a probability distribution of the displacement similar

to ref. [30].

3. The Yukawa model

Here we consider a simplified model which omits gauge fields; it is also the model used as

an introductory example in ref. [21]. The model resembles the SM in that it displays the
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phenomenon of vacuum instability for sufficiently large Yukawa coupling, while, as we shall

emphasise, differing in some crucial respects. It has the advantage that explicit solutions

to the (one-loop) renormalisation group (RG) equations are easily constructed, so the RG

evolution is particularly transparent. In this section we will analyse the renormalisation

group evolution of the mass and couplings and consider the nature of the theory at different

scales, while in the next section we will consider in detail the scalar effective potential.

The model consists of a real scalar field coupled to a set of nF massless Dirac fermions;

the Lagrangian is

L = 1
2∂µφ∂µφ + iψiγ

µ∂µψi − 1
2m2φ2 − 1

24λφ4 − hφψiψi. (3.1)

In this section we will mainly assume m2 > 0, and make a few comments about the

cases m2 < 0 and m2 = 0 at its end; we will return to these cases in more detail in section 4.

The one-loop β-functions for the mass m2 and the couplings h and λ are given by

βm2 = κm2
(
λ + 4nF h2

)

βλ = κ
(
3λ2 + 8nF λh2 − 48nF h4

)

βh = (2nF + 3)κh3, (3.2)

where κ = (16π2)−1. We will also require the scalar anomalous dimension, which at one

loop is

γφ = 2κnF h2. (3.3)

To analyse the RG behaviour of the model it is convenient to consider Y = λ/h2, which

satisfies

βY = κh2
(
3Y 2 + (4nF − 6)Y − 48nF

)
, (3.4)

so that for nF = 1, Y has fixed points Y+,− = 1
3(1 ±

√
145) ≈ 4.35,−3.68. In figure 4, we

plot βY against Y for this case.

For all nF ≥ 0, Y+ > 0 and Y− < 0; and for large nF ,3 Y+,− ≈ 12,−10 − 4nF /3.

It is easy to see that Y+,− are IR and UV (ultra-violet) attractive fixed points respec-

tively. Let us consider the evolution of the couplings, starting at t = ln µ = 0; and first

look at what happens in the UV, i.e. for t > 0. The evolution of h is elementary:

h2(t) =
h2

0

1 − Bκh2
0t

. (3.5)

where B = 2(2nF + 3). As t increases, h(t) approaches a Landau pole, thus evidently

departing the perturbatively believable regime. If Y (0) > Y+, then Y (t) increases with t;

eventually h would reach its Landau pole, though in fact, in one-loop approximation, λ

reaches its Landau pole first. To see this, we require the explicit solution for Y of eq. (3.4),

which for Y (0) ≡ Y0 > Y+ is

Y (t) =
Y+ − z(t)Y−

1 − z(t)
(3.6)

3Of course if we simply increase nF the theory soon loses a perturbative regime. We will consider

separately the large nF theory obtained by h → h/
√

nF
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Y

!
Y

Y- Y+

Figure 4: Plot of βY against Y (for nF = 1). The arrows show the direction of RG flow as t

increases.

where

z(t) =
Y0 − Y+

Y0 − Y−

(
h2

h2
0

) 3(Y+−Y
−

)

B

(3.7)

and we see that Y → ∞ when z(t) → 1, which manifestly occurs for a finite value of h(t).

If Y− < Y0 < Y+ then it is clear from eq. (3.4) that as t → ∞ we will have Y (t) → Y−.

Moreover at some finite value of t, t′ say, Y (t) and hence λ(t) passes through zero. Clearly

the issue of perturbative believability of this result rests simply on the value of h(t′). The

explicit solution for Y in this region is given by

Y (t) =
Y+z(t) + Y−

1 + z(t)
(3.8)

where

z(t) =
Y0 − Y−

Y+ − Y0

(
h2

0

h2

) 3(Y+−Y
−

)

B

(3.9)

so that at t = t′ we have

h2

h2
0

=

[
Y+(Y0 − Y−)

Y−(Y0 − Y+)

] B

3(Y+−Y
−

)

(3.10)

For t > t′, Y → Y−; and since h(t) increases with t then so does the magnitude of λ. Thus

the scalar potential becomes negative; and according to the one-loop solution unbounded

from below.

Finally for Y < Y−, the solution for Y is again given by eq. (3.7) and as t increases Y

increases towards the fixed point Y−.
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Now let us discuss what happens in the infra-red, i.e. as t decreases from zero. Let

us assume that the scale µ0 corresponding to t = 0 satisfies µ2
0 > m2. Since Y+ is IR

attractive, Y will approach Y+ both for Y0 > Y+ and Y− < Y0 < Y+, while if Y0 < Y−,

Y (t) decreases as t decreases. The situation changes, however, when µ2 reaches m2.

It is well-known that a mass-independent renormalization scheme, such as MS, does

not properly take into account threshold effects, so one must be careful extrapolating to

scales µ2 < m2. To obtain the correct form of the effective field theory we must integrate

out the massive scalar excitations (just as we do not include the top quark contribution to

the QCD β-function in describing physics at scales of a few GeV, for example). The result

is a non-renormalisable theory of massless fermions with a series of interactions suppressed

by powers of 1/m2. One may equally well retain the scalar field as an auxiliary field. In

the language of Feynman diagrams, we rewrite each scalar propagator as

1

p2 + m2
=

1

m2
· 1

1 + p2/m2
. (3.11)

The factor of 1/(1 + p2/m2) is then expanded as a power series in p2/m2. In this way,

the scalar field becomes an auxiliary, i.e., non-propagating, field. To organise the effective

field theory, it is useful to associate the factor of 1/m2 with the vertices at each end of the

propagator and the factors of p2 with derivatives on the fields. Correspondingly, we rescale

σ ≡ mφ, and thus are led to the Lagrangian

L = iψiγ
µ∂µψi + 1

2σ2 − h

m
σψiψi +

α1

m2
(∂µσ)2 − 1

24
λ(

σ

m
)4 − α2

m4
(ψ∂µψ)2 + · · · (3.12)

All terms but the last are just a rewriting of the original Lagrangian, so it appears to be

a sleight-of-hand.4 However, now the “kinetic energy” term (with coefficient α1) is to be

thought of as a higher-dimensional operator. To leading order, α1 ∼ O(h2). (Note that σ

has dimensions of (mass)2, like an auxiliary field of a supersymmetric theory.) To lowest

order in 1/m, the auxiliary field is in fact given by

σ =
h

m
ψψ. (3.13)

It is easy to see from eq. (3.12) that the σ2 term and the Yukawa term are unrenormalised,

while the fermion box diagram with four Yukawa insertions gives rise to a β-function for λ

of the form

βλ = −48κnF h4, (3.14)

so that

λ(t) = λ(0) − 48κnF h4t. (3.15)

Here we take t ≡ ln(µ/m), so that t < 0 in the low-energy theory. The value of λ(0) is

obtained by matching to the corresponding coupling in the original theory on scales µ > m.

Moreover, in the expansion in 1/m, eq. (3.14) and eq. (3.15) are exact.

4Actually, in writing eq. (3.12), we have dropped a number of redundant operators using the lowest

order equations of motion. For the justification, see ref. [31].
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Note that λ grows in the IR limit. Now by assumption, λ(0) > 0, so that the tree

vacuum is at φ = 0. (Otherwise, the fermions would be massive and the low-energy

effective field theory would be different.) Thus the self-interaction of the scalar is repulsive

and remains so for all scales in the low-energy theory. Intuitively at least, we would not

expect spontaneous symmetry breaking in this regime, a conclusion that will be reinforced

by the discussion in the next section.

Let us next consider the case classically scale-invariant case m2 = 0. Let us suppose

that, at t = 0, we have Y (0) > Y−. Then in the IR (since the scalar field does not now

decouple), Y flows to the fixed point Y = Y+. Since h → 0 in the IR, we therefore have also

λ → 0. Thus the scalar potential tends to zero smoothly and the origin (φ = 0) remains a

local minimum of V (φ).

In the UV, the RG behaviour of the couplings is exactly as in the m2 > 0 case; thus

for Y− < Y (0) < Y+, λ becomes negative, and the potential unbounded from below. As

we shall see in the next section, when we consider the radiatively corrected potential, the

theory actually undergoes dimensional transmutation [1] leading to interesting structure of

the effective potential. Unlike the scalar QED case, the dimensional quantity manifested

is in the field value at a maximum of the potential where it turns over. We will consider

this case (and the m2 < 0 case) in more detail in the next section.

3.1 The large nF limit

In order to define a weakly-coupled large nF theory we must let h → h/
√

nF . Then we

have for the β-functions and γ the following expressions. For µ2 > m2:

βm2 = κm2
(
λ + 4h2

)

βλ = κ
(
3λ2 + 8λh2

)

βh = 2κh3

γφ = 2κh2. (3.16)

With Y = λ/h2 once again, we have from eq. (3.16)

βY = κh2
(
3Y 2 + 4Y

)
, (3.17)

so that in the UV the analysis remains similar, but with points Y+,− = 0,−4/3.

In the IR limit we see that (due to the rescaling h → h/
√

nF ) we have βλ = 0, so that

for µ < m, the coupling λ freezes, remaining constant for t → −∞.

In the next section we explore the consequences of these RG considerations for the

effective potential.

4. The RG improved potential

Ref. [14] contains a detailed analysis of the procedure for RG-improving the effective po-

tential; and in particular the significance of the cosmological constant term Ω (previously

– 10 –
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generally neglected) was emphasised. It was also remarked that by considering the renor-

malisation group improvement of V ′ ≡ ∂V
∂φ

the Ω-issue may be finessed. Here we will

compare the RG improved forms of V and V ′.

We will here use the RG improved forms as follows:

V (µ, λi, φ) = ξ(t)4V (µ(t), λi(t), φ)

V ′(µ, λi, φ) = ξ(t)4V ′(µ(t), λi(t), φ), (4.1)

where

dλi(t)

dt
= βi

(
λ(t)

)

βi =
βi + δiλiγ

1 + γ

γi =
γ

1 + γ

ξ(t) = exp

(
−

∫ t

0
γ

(
λi(t

′)
)

dt′
)

µ(t) = µet. (4.2)

Here λi stands for all couplings and masses, with canonical mass dimension δi and βi is the

β-function for λi. Evidently to leading order we have γ = γ. The effective potential V (φ)

is given (in the one-loop approximation) as follows:

V (φ) = Ω(µ,m, λ) + 1
2m2φ2 + 1

24λφ4

+
1

64π2

[
M4

(
ln

M2

µ2
− 3

2

)
− 4nF h4φ4

(
ln

(
h2φ2

µ2

)
− 3

2

)]
(4.3)

where M2 = m2 + 1
2λφ2, and Ω is the afore-mentioned cosmological constant term (this

was denoted Ω′ in ref. [14]).

Our RG improved solutions thus take the form:

V (φ) = ξ(t)4
[
Ω(t) + 1

2m2(t)φ2 + 1
24λ(t)φ4 +

1

64π2
M4(t)

(
ln

M2(t)

µ2(t)
− 3

2

)

− 1

64π2
4nF h4(t)φ4

(
ln

h2(t)φ2

µ2(t)
− 3

2

)]
, (4.4)

V ′ = ξ(t)4
[
m2(t)φ + 1

6λ(t)φ3 +
1

32π2
λ(t)M2(t)

(
ln

M2(t)

µ2(t)
− 1

)

− 1

32π2
8nF h4(t)φ3

(
ln

h2(t)φ2

µ2(t)
− 1

)]
. (4.5)

In order that V satisfy the usual RG equation, Ω(µ, λi) must itself satisfy an RG

equation which to leading order can be written

[
µ

∂

∂µ
+ βi

∂

∂λi

]
Ω =

1

32π2
m4. (4.6)
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In ref. [32] and ref. [14] the consequences of various choices for Ω were considered. For

example, one may decide to require that Ω be free of explicit dependence on µ; in the

absence of the Yukawa coupling h the resulting solution of eq. (4.6) (using one-loop β-

functions) is

Ω = −m4

(
1

2λ
+

c

λ
2
3

)
, (4.7)

where c is an arbitrary constant. It is interesting that when we renormalisation improve

the solution as described above, the c-term in eq. (4.7) remains independent of t in this

case because we have

λ(t) =
λ0

1 − 3κλ0t

m2(t) =
m2(0)

(1 − 3κλ0t)
1
3

. (4.8)

The case h 6= 0 is not so easy to analyse.

A more natural form for Ω is

Ω = −V̂ (φ)
∣∣∣
φ=v

(4.9)

where V̂ (φ) is the potential omitting Ω, and v is the value of φ at any extremum of V̂ . Of

course the simplest such extremum is v = 0, corresponding to a solution for Ω which is (to

leading order)

Ω = − 1

64π2
m4 ln

m2

µ2
. (4.10)

This corresponds of course to simply subtracting the value of V at φ = 0. It is this form

of Ω we use in the subsequent analysis.

Let us now consider the behaviour of the potential as a function of φ. We will consider

separately the three cases m2 > 0, m2 = 0 and m2 < 0.

4.1 The m2 > 0 case

For φ → 0, if we choose t so that µ(t) = φ, then this controls the logarithm in the fermion

loop contribution; the scalar loop contribution decouples for µ2 < m2 (as described in the

last section for the β-functions) and must hence be removed from eqs. (4.4), (4.5) and

we replace eq. (4.10) by Ω = 0. The behaviour of the potential for φ2 < m2 is then

determined by the IR RG evolution of λ which we explored in the last section, culminating

in eq. (3.15). From this it is clear that, with µ ∼ φ, λ grows like λ ∼ − ln φ, and hence

V ∼ m2φ2/2 + λφ4/24 → 0.

The question to be addressed now is whether we can conclude that this represents

the ground state of the theory; so let us examine the potential for large φ. Once again

we choose t so that µ = φ, in order to control the logarithms in eqs. (4.4), (4.5). Note

that eq. (4.10) contains a potentially large logarithm, but at large φ, Ω, being of O(m4),

is negligible in any event. We will explicitly verify this presently. So the behaviour is

controlled by the UV evolution of the couplings.
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Let us first consider Y (0) > Y+. In that case, as described in the last section both h

and λ increase until λ reaches a Landau pole. Before this the theory of course becomes

non-perturbative; the potential is never lower than it is at the origin while perturbation

theory remains reliable. If we invoke a UV cut-off Λ representing the scale of new physics

then the theory may or may not remain perturbative up to the cut-off. In either event,

we conclude that it is possible that φ = 0 represents the ground state of the theory; we

cannot be certain either because of the non-perturbative nature of the theory in the UV,

or because of the new physics beyond the cut-off.

Now consider the case Y− < Y0 < Y+. Now as t increases Y flows towards the fixed

point at Y = Y−. Thus λ and eventually V become negative; depending on the initial

conditions this can certainly happen for perturbative values of the couplings h, λ. As

mentioned above, just how far one can proceed toward the IR using these β-functions

depends on the value of m2, since these assume that m2 is sufficiently small so that the

scalar particle has not decoupled.

As an illustration, in figure 5 we plot V (φ) (rather, V (t)) as calculated from eq. (4.4)

and from integrating eq. (4.5) for nF = 1 and values (at t = 0) λ = h = 1 and µ = m2,

normalising so that at t = 0, V = 0. We denote the results for V from the two calculations

as Va and Vb, respectively. The results for Va and Vb are not precisely the same; the fact

that they agree well for the range of t displayed is because we are still in the perturbative

regime. We see clearly that at t = t∗ ≈ 3.6, the potential passes through zero becomes

rapidly negative. (Note that the potential inevitably passes through an extremum (a

maximum) before becoming negative; we will analyse this extremum in more detail in the

special case m2 = 0, which we will consider presently.) Evidently we are inclined to deduce

that the tree minimum at φ = 0 is not the ground state of the theory. Can we trust this

conclusion? First, note that, with our initial conditions, we have h(t∗) ≈ 1.14 which is

manifestly still perturbative.

We must also require that the cut-off Λ representing the scale of new physics satisfies

ln Λ > t∗, if we are to trust the calculation of V (t∗). (Of course for values of φ close to the

cut-off we would have to consider the effect of higher dimensional operators suppressed by

one or more power of the cut-off [33]–[36]. Here we agree with ref. [35] that the effect of such

operators on instability bounds is necessarily small whenever it can be reliably calculated.)

Now for fixed h(0), as we increase λ(0) (and hence Y (0)), t∗ increases. Thus for a given

cut-off Λ, the value of λ(0) such that et∗ = Λ is the upper limit on λ(0) corresponding to a

theory such that we can conclude that the potential becomes negative. A separate issue is

that for sufficiently large t, h(t) becomes large and we can no longer trust our calculation.

For et∗ < Λ, therefore, we cannot necessarily deduce that the theory has no ground state;

but we claim we can conclude that the ground state (if it exists) is lower than the tree

minimum.5

Note that V passes through zero at t ≈ 3.6. With the same initial conditions, the

coupling λ passes through zero at t = t′ ≈ 2.97, and M2 passes through zero at t ≈ 2.98.

5In ref. [21] it is asserted that after decreasing for a certain range of energies, λ(t) increases towards

a Landau pole; this is incorrect. For Y− ≤ Y (0) ≤ Y+, λ(t) decreases monotonically with t while for

Y (0) > Y+ λ(t) increases monotonically with t.
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Figure 5: Plot of Va and Vb against t = lnµ

Therefore for t > 2.98 the potential (including one loop corrections) in fact has an explicit

perturbative imaginary part; in figure 5 we have taken the real part of the potential. This

imaginary part is similar to that which develops in φ4-theory for m2 < 0 as φ is reduced.

Now at M2 < 0 we have argued above that the imaginary part of the potential has

a straightforward interpretation. Let us consider the potential precisely at the value of

φ defined by M2 = 0. Beginning at L = 4, the potential contains power singularities at

M2 = 0, as explained in section 2 in the context of the pure scalar theory. (Note that in

the m2 < 0 case, M2 = 0 occurs at a positive value of λ, and so happens at both a large

value of φ (as λ approaches zero) and a small value.) Reverting to the m2 > 0 case we have

been discussing, we must conclude that the perturbation expansion for V breaks down for

values of t such that M2 ≈ 0. In figure 5 this corresponds to t ≈ 2.98, as we have already

mentioned. However, at t∗ ≈ 3.6, where V passes through zero, we find that η ≈ −0.004;

the range of φ for which η > 1 (and hence for which V cannot be reliably calculated in

perturbation theory) is very small indeed.

The arguments presented in ref. [21] amount essentially to the statement that the

region of validity of V (φ) is curtailed by the requirement that λ(Λ) > 0; and they propose

that the region of validity of V (φ) be defined by the inflection point in the potential (if

this occurs a scale below Λ), which we see from figure 5 indeed occurs at the point where

λ changes sign as described above. They further conclude that this model does not exhibit

the vacuum instability described above; for m2 > 0 the ground state of the theory is at

φ = 0, and the potential is a convex function within its region of validity (simply because

– 14 –
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this region is curtailed at the inflection point. We simply disagree with this analysis; as

we have described above, the work of refs. [20] and [30] demonstrate quite convincingly, in

our opinion, that the potential has meaning in its non-convex region; and we see no reason

to require that λ(Λ) > 0. As usual, we need to require, for perturbative believability,

that relevant expansion parameters are “sufficiently” small; and in our examples, since we

use renormalisation group-improved perturbation theory, at large φ these parameters are

simply the dimensionless couplings evaluated at a scale commensurate with φ in the UV

region. It seems clear to us, therefore, that for the choice of parameters used in figure 5,

we can certainly conclude that the local minimum φ = 0 is unstable.

It is essentially for the same reason that we disagree with refs. [22, 23]. There the

claim is that the calculation of the potential in a theory without a UV cut-off disagrees

with same calculation with a cut-off and that the latter agrees with simulation data. We

claim, however, that the exhibition of this disagreement occurs invariably in regions of

parameter space where perturbation theory is not to be trusted. When there is substantial

disagreement between the theory with and without a cutoff, it is a sure sign that the

scale of the field is not far below the scale of the cutoff. Perturbation theory breaks down

because either h or λ become large. This has, therefore, no bearing on our discussion above,

where we are always careful to confine our conclusions to regions of parameter space where

perturbation theory is expected to remain valid.

4.2 The m2 = 0 case

We turn now to the interesting case when m2 = 0. The analysis of this can be done

with the full RG apparatus developed above, but it is both interesting and illuminating to

mimic the original simplified CW treatment of scalar QED. Let us suppose for simplicity

that 0 < Y (0) < Y+. For this range we have seen in section 2 that λ approaches zero as t

increases. For λ(t) sufficiently small, we may neglect the higher-order corrections in λ, so

the effective potential may be written as6

Veff = φ4

[
λ

4!
− nF

h4

16π2
ln(φ2/v2)

]
, (4.11)

where the scale v will be defined presently. Then

V ′
eff = φ3

[
λ

3!
− nF

h4

8π2

(
1 + 2 ln(φ2/v2)

)]
. (4.12)

Evidently V ′
eff vanishes for a nonzero value of φ as well as at the origin. If we choose the

scale v to be the value of φ at this extremum, then we find it occurs at the scale where the

running couplings satisfy the relation

λ = nF
3h4

4π2
, (4.13)

at which point

V ′′
eff = −nF

h4

2π2
v2 < 0. (4.14)

6For simplicity, we have chosen a different renormalization convention than in eq. 4.3.
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Thus there is a maximum value defined by dimensional transmutation, beyond which the

potential steadily decreases. This discussion is very similar to the CW one for scalar QED,

except that there, because the e4 contribution to the effective potential differs in sign from

the h4 one, the extremum is a minimum, and eq. (4.13) above is replaced by the equation7

λ = −9κe4.

Returning to the case m2 > 0, it should now be clear that the preceding analysis will

remain valid to a good approximation so long as m2 << v2, as in fact is the case for the

values we chose to produce figure 5. In fact, at the maximum of V displayed in figure 5,

we find that λ ∼ −0.2 while h ∼ 1.12. Note that λ and h4/(4π2) are indeed of the same

order of magnitude at the maximum, as we would expect.8

In a derivation based on the RG-improved form of the potential (eq. (4.4) or its deriva-

tive eq. (4.5)) eq. (4.13) is replaced by the equation [37, 38]

4λ + βλ = 0, (4.15)

but the essential features of the calculation are unaffected. We might note that the Yukawa

model is more amenable to perturbative treatment than scalar QED. In the latter case,

while the existence of a local minimum could be unambiguously demonstrated perturba-

tively, the behaviour of the potential both in a neighborhood of the origin as well as for

large field values was beyond the realm of perturbation theory. In our case, we are able to

treat both the origin and the maximum perturbatively, with the breakdown of perturbation

theory restricted to large values of the field.

The only caveat on this discussion is that the coupling h(v) be sufficiently small so

that it is in the perturbative regime. According to our discussion in the previous section,

there is then always a scale λ at which the relation (4.13) holds. To conclude, in the case

m2 = 0, the origin is metastable and decays to a region where eventually the couplings

are strong. Once again, whether the theory has no ground state or is replaced at high

scales by a modified theory cannot be determined within this framework. There is hardly

a more compelling application of radiative corrections than dimensional transmutation,

yet it is completely missed by the arguments of ref. [21] and overlooked in lattice results,

ref. [22, 23], whose range of mass parameters does not include this important region.

4.3 The m2 < 0 case

Finally, we consider the case m2 < 0. At the classical level, the scalar field behaves as in

the case of the φ4 model discussed in section 2.1, i.e., the potential has minima at φ = ±v,

where

v2 =
−6m2

λ
. (4.16)

7In fact CW employed a slightly different subtraction procedure from the one implied by eq. (4.11),

leading to the relation λ = +66κe4, but this of course has no effect on the physics. This shows, however,

that if we define the renormalisation scale to be equal to 〈φ〉 at the minimum, the resulting relation between

λ and h still depends on the details of the subtraction procedure.
8The fact that λ has the opposite sign from that suggested by eq. (4.13) is for the same reason as we

described above in the CW case, simply a matter of renormalization conventions.
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The theory undergoes spontaneous symmetry breaking, and the scalar gets a mass mH

with m2
H = −2m2 = λv2/3. As a result, each fermion also gets a mass mf = hv. The ratio

of the masses is

m2
H

m2
f

=
λ

3h2
=

Y

3
. (4.17)

Radiative corrections to this classical behaviour will shift the values of the minima and the

masses, but so long as perturbation theory holds,9 this qualitative behaviour is unchanged.

The remainder of the discussion can be inferred from the behaviour of the running cou-

plings. Generically, Y ∼ O(1). The behaviour for large field values leads us to choose the

scale µ to be O(φ) to avoid large logs; and the UV behaviour of Y (µ) has been discussed in

detail in section 2. For small values of the field, however the potential is not given correctly

by choosing µ ∼ φ. When the field is small compared to the masses of the scalar and the

fermions, they both decouple. The theory in the infrared is just that of a set of nF massive

free fermions and a massive free scalar, so the running of the couplings below these masses

is not correctly given by a mass-independent renormalization scheme.

5. The standard model

The study of the possible SM vacuum instability has a long history and a substantial

literature. The first comprehensive treatment from an RG perspective was in ref. [14];

subsequent refinements included a particularly lucid discussion in ref. [18]). The situation

in the SM is similar to the Yukawa model we have considered, in that the one loop fermion

contribution to V potentially destabilises the electro-weak vacuum; however it differs in

that onset of the instability is associated with another, deeper, minimum of the potential

(which may still occur within the perturbative regime).

The deeper minimum can occur because while the top quark Yukawa coupling con-

tribution to the evolution of the Higgs self-coupling λ evolution tends to push it down

towards (or through) zero in the UV, the Yukawa coupling itself gets smaller in the UV

due to the gauge coupling contributions to its evolution.10 Therefore eventually the gauge

coupling contributions to the evolution of λ cause it to recover to positive values. It is easy

to verify this from the explicit expressions for the β-functions [3], which for convenience

we reproduce below. (Note that the scalar anomalous dimension is gauge dependent: the

result below is for the Landau gauge.)

9For the classical behaviour to be valid, |m2| must be large compared to the scale v2 associated with

dimensional transmutation in the m2 = 0 case. Otherwise, the form of the effective potential will be more

complicated than assumed here.
10In the SM, the top Yukawa is substantially below the Quasi-Infra-Red Fixed Point value [39] which

would correspond to approaching a Landau pole at gauge unification.
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The one-loop RG functions are

κ−1γ(1) = 3h2 − 9
4g2 − 3

4g′
2

κ−1β
(1)
λ = 4λ2 + 12λh2 − 36h4 − 9λg2 − 3λg′

2
+ 9

4g′
4
+ 9

2g2g′
2
+ 27

4 g4

κ−1β
(1)
h = 9

2h3 − 8g2
3h − 9

4g2h − 17
12g′

2
h

κ−1β(1)
g = −19

6 g3

κ−1β
(1)
g′ = 41

6 g′
3

κ−1β(1)
g3

= −7g3
3

κ−1β
(1)
m2 = m2(2λ + 6h2 − 9

2g2 − 3
2g′

2
). (5.1)

The two-loop contributions to the RG functions are given by [3]

κ−2γ(2) = 1
6λ2 − 27

4 h4 + 20g2
3h2 + 45

8 g2h2 + 85
24g′

2
h2 − 271

32 g4 + 9
16g2g′

2
+ 431

96 g′
4

κ−2β
(2)
λ = −26

3 λ3 − 24λ2h2 + 6λ2(3g2 + g′
2
) − 3λh4 + 80λg2

3h2

+45
2 λg2h2 + 85

6 λg′
2
h2 − 73

8 λg4 + 39
4 λg2g′

2
+ 629

24 λg′
4

+180h6 − 192h4g2
3 − 16h4g′

2 − 27
2 h2g4 + 63h2g2g′

2

−57
2 h2g′

4
+ 915

8 g6 − 289
8 g4g′

2 − 559
8 g2g′

4 − 379
8 g′

6

κ−2β
(2)
h = h

(
−12h4 + h2(131

16 g′
2
+ 225

16 g2 + 36g2
3 − 2λ) + 1187

216 g′
4

−3
4g2g′

2
+ 19

9 g′
2
g2
3 − 23

4 g4 + 9g2g2
3 − 108g4

3 + 1
6λ2

)

κ−2β(2)
g = g3(3

2g′
2
+ 35

6 g2 + 12g2
3 − 3

2h2)

κ−2β
(2)
g′ = g′

3
(199

18 g′
2
+ 9

2g2 + 44
3 g2

3 − 17
6 h2)

κ−2β(2)
g3

= g3
3(

11
6 g′

2
+ 9

2g2 − 26g2
3 − 2h2)

κ−2β
(2)
m2 = 2m2

(
−5

6λ2 − 6λh2 + 2λ(3g2 + g′
2
) − 27

4 h4 + 20g2
3h2

+45
8 g2h2 + 85

24g′
2
h2 − 145

32 g4 + 15
16g2g′

2
+ 157

96 g′
4)

. (5.2)

Here h, λ are the Yukawa and Higgs self-coupling normalised so that mt = hv/
√

2 and

λ = 6m2/v2 = 3m2
h/m2 where v ∼ 246 GeV.

One easily sees that for a given h, there will be a lower limit on λ such that the

electroweak vacuum is the true one; this corresponds (for a given mt) to a lower bound on

the Higgs mass mh.

For mh below this bound the electroweak vacuum would be metastable. Here we have

little to add to the discussion of ref. [18]. For a cut-off Λ = 1 TeV, the bound is about [18]

mH(GeV) > 52 + 0.64(mt(GeV) − 175) − 0.5
α(MZ ) − 0.118

0.006
, (5.3)

leaving us with comforting stability,11 given existing experimental knowledge of mt and

bounds on mh. For Λ = 1019 GeV, the bound mH(GeV) > 52 GeV above becomes

11For the issue of whether the electroweak vacuum might be unstable and yet sufficiently long-lived to

permit our presence, we refer the reader to the literature; for a recent example see ref. [16].
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mH(GeV) > 134 GeV, so it remains possible that the discovery of a Higgs (with

mH(GeV) < 134 GeV) will provide, from this point of view, evidence for physics beyond

the standard model.

The M2 = 0 instability on which we remarked occurs in this case too, and is similarly

confined to a very narrow range of φ values well away from the value of φ at which the

potential drops below the electro-weak minimum.

The SM analysis is repeated in ref. [21] where their philosophy that the physical cut-off

may not be higher than the inflection point in the potential leads, (for smaller values of

the cut-off) to substantially different lower bounds on mH than those obtained in ref. [18].

They also assert that the metastable scenario described above cannot occur, due essentially

to the convex nature of the potential. We maintain that is not correct, as we have explained

above.

6. Conclusions

Using mainly the simple λφ4 theory and its extension involving Yukawa couplings, we

have reviewed aspects of the computation of the scalar effective potential that are sensitive

to non-convex regions of the potential, with a particular focus on the issue of ground

state stability. We have found no reason to disbelieve that a sufficiently large fermionic

contribution will destabilise the tree vacuum (corresponding to the origin in a simple theory

with scalar m2 ≥ 0 or to the electroweak vacuum in the SM.) Moreover this instability can

be consistently demonstrated within the confines of perturbative believability. The Yukawa

model we have studied has the additional interesting feature that it exhibits weak-coupling

dimensional transmutation associated with a local maximum of the potential. The scale

associated with dimensional transmutation is crucial, since it sets the value of the field

where the instability may occur, even when m2 6= 0.

We conclude that calculations of the effective potential within the perturbative domain

can be trusted, and inferences about metastability relied upon. While the ultimate effective

potential may be convex, or the constrained effective potential rather different from the

perturbative calculation, their application are not in contradiction with this conclusion.

One simply must be careful about the questions one wishes to address. The formalism

employed must conform to the particular physical situation under discussion.
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